Defense Department officials spent the last couple administrations preoccupied with building a strategy to deal with cockroaches hellbent on asymmetrical warfare. But while they were busy with “transformation,” not “innovation,” Defense Department scientists and engineers have been quietly working on some pretty cool weapons technology that sounds like it comes straight out of sci-fi.
And though development has been slow to yield applicable products, defense and security policy analyst Tom Donnelly is clearly optimistic about some recent breakthroughs:
Perhaps the most tantalizing near-term technologies are related to the substitution of intense amounts of electrical energy for the explosive power of gunpowder. This comprises a kind of catch-all category that subsumes several developments and could have—at least to leaders with an engineering mindset—multiple applications. Fielding electrical-energy-based weapons depends upon the ability to generate and to store immense amounts of power, and then release it either as a destructive force on its own or to propel a projectile at extremely high speeds. Stored electricity might prove to be the gunpowder of the future.
The Defense Department and the military services have been experimenting with these technologies for a decade and more. The Army and Navy have tested a number of “railgun” designs. Railguns are electromagnetic launchers with a parallel set of conductors—the “rails”—that accelerate a sliding armature by passing a very strong current down one rail, along the armature to the other rail. In essence, it’s a 21st-century slingshot that hurls a very dense, but inert, projectile about twice as fast as a traditional cannon; the kinetic energy of these projectiles is enormous. …
(O)n the cusp of science fiction and reality is the prospect of using directed energy itself as a weapon. Indeed, some low-level forms of directed energy have been employed by the military for some time: microwave systems that heat the water in skin cells, causing irritation, have been used as a crowd-control measure; microwaves also have been fielded to fry enemy electronic systems. Even the radars on combat aircraft may have limited applications in disrupting the sensors of attacking missiles. And, as far back as 2002, the U.S. Air Force began flying an “Airborne Laser”—basically, a giant high-energy chemical laser stuffed inside a 747 commercial aircraft body—as a missile defense test system. In January 2010 the system successfully passed an intercept test and a month later destroyed two targets in a single engagement. But shortly thereafter, amid one of the many rounds of defense budget reductions during the Obama Administration, the effort was scrapped. In many ways, fielding the system as designed was a bad idea—the laser itself needed to be more powerful and would have required a large and vulnerable aircraft to fly within range of enemy air defenses—but the underlying concept was sound and indicative that such systems were technologically feasible, if tactically immature. Also, it was clear that using electricity rather than chemistry as a power source was a better solution.
Regardless of how America wants to deal with new or unknown threats, the most important element of a strong defense is making sure the U.S. has a tactical advantage — training, equipment, and numbers — if and when U.S. servicemen and women have to go back out and demonstrate America’s conventional-force strength.
That means keeping the focus on innovation, not transformation.
The enthusiasts for “transformation” of the past generation have been looking through the wrong end of the telescope; their model of innovation was that, starved of funds, the U.S. armed services would have to think of new ways to fight. But, through history, the process of change in war has been one that more frequently rewards practical tinkering — matching organizations and doctrine to technologies — more than bold conceptualization.
In other words, the key to winning war is being able to put up a wholly superior fight.